ncclient Documentation
Release 0.6.12

Shikhar Bhushan and Leonidas Poulopoulos

Jan 18, 2025

1 Supported device handlers

1.1 manager —High-level AP

1.2 Complete API documentation
2 Indices and tables
Python Module Index

Index

CONTENTS

ncclient Documentation, Release 0.6.12

ncclient is a Python library for NETCONF clients. It aims to offer an intuitive API that sensibly maps the XML-encoded
nature of NETCONF to Python constructs and idioms, and make writing network-management scripts easier. Other
key features are:

* Supports all operations and capabilities defined in RFC 6241.

* Request pipelining.

* Asynchronous RPC requests.

» Keeping XML out of the way unless really needed.

» Extensible. New transport mappings and capabilities/operations can be easily added.

The best way to introduce is through a simple code example:

from ncclient import manager

use unencrypted keys from ssh-agent or ~/.ssh keys, and rely on known_hosts
with manager.connect_ssh("host", username="user") as m:
assert(":url" in m.server_capabilities)
with m.locked("running™):
m.copy_config(source="running", target="file:///new_checkpoint.conf")
m.copy_config(source="file:///old_checkpoint.conf", target="running")

As of version 0.4 there has been an integration of Juniper’s and Cisco’s forks. Thus, lots of new concepts have been
introduced that ease management of Juniper and Cisco devices respectively. The biggest change is the introduction of
device handlers in connection params. For example to invoke Juniper’s functions and params one has to re-write the
above with device_params={‘name’:’junos’}:

from ncclient import manager

with manager.connectChost=host, port=830, username=user, hostkey_verify=False, device_
—params={ 'name':"'junos'}) as m:
c = m.get_config(source="running"') .data_xml
with open("%s.xml" % host, 'w') as f:
f.write(c)

Respectively, for Cisco Nexus, the name is nexus. Device handlers are easy to implement and prove to be futureproof.

The latest pull request merge includes support for Huawei devices with name huawei in device_params.

CONTENTS 1

https://datatracker.ietf.org/doc/html/rfc6241.html

ncclient Documentation, Release 0.6.12

2 CONTENTS

CHAPTER
ONE

SUPPORTED DEVICE HANDLERS

Alcatel Lucent: device_params={‘name’:’alu’}
e Ciena: device_params={ ‘name’:’ciena’}

¢ Cisco:

CSR: device_params={ ‘name’:’csr’}

Nexus: device_params={ ‘name’:’nexus’}

10S XR: device_params={ ‘name’:’iosxr’}

10S XE: device_params={ ‘name’:’iosxe’}

H3C: device_params={‘name’:’h3c’}
e HP Comware: device_params={‘name’:’hpcomware’}
* Huawei:
— device_params={‘name’: " huawei’}
— device_params={‘name’:’huaweiyang’}
e Juniper: device_params={ ‘name’:’junos’}
 Server or anything not in above: device_params={ ‘name’: default’}

Contents:

1.1 manager — High-level API

This module is a thin layer of abstraction around the library. It exposes all core functionality.

1.1.1 Customizing

These attributes control what capabilties are exchanged with the NETCONF server and what operations are available
through the Manager APIL

ncclient Documentation, Release 0.6.12

ncclient.manager.OPERATIONS = {'cancel_commit':
.operations.
.operations.
.operations.
.operations.
.operations.
.operations.
.operations.
.operations
.operations.
.operations
.operations
.operations
.operations.
.operations.
.operations.
.operations.
.operations
.operations.
.operations.

'ncclient
'ncclient
'ncclient
'ncclient
'ncclient
'ncclient
'ncclient
'ncclient
'ncclient
'ncclient
'ncclient
'ncclient
'ncclient
'ncclient
'ncclient
'ncclient
'ncclient
'ncclient
'ncclient

edit.CancelCommit'>,
session.CloseSession'>,

edit.Commit'>, 'copy_config':
edit.CopyConfig'>, 'create_subscription':
subscribe.CreateSubscription'>, 'delete_config':
edit.DeleteConfig'>, 'discard_changes':

edit.DiscardChanges'>,

session.KillSession'>,

<class

'close_session':

'commit':
<cl

'dispatch':

.retrieve.Dispatch'>, 'edit_config':
edit.EditConfig'>, 'get':
.retrieve.Get'>, 'get_config':
.retrieve.GetConfig'>, 'get_schema':
.retrieve.GetSchema'>,

<class
<cl

'kill_session':

'lock': <c

lock.Lock'>, 'poweroff_machine':

flowmon.PoweroffMachine'>,
flowmon.RebootMachine'>,
.rpc.GenericRPC'>,

lock.Unlock'>,
edit.Validate'>}

'unlock':
'validate':

'reboot
rpc': <
<clas
<class

<class
<class
ass

<class
<class

ass

<class
<class

lass

<class

_machine':

class

s

<class

<class

<class

<class

Dictionary of base method names and corresponding RPC subclasses. It is used to lookup operations, e.g.
get_config is mapped to GetConfig. It is thus possible to add additional operations to the Manager APIL.

1.1.2 Factory functions
A Manager instance is created using a factory function.

ncclient.manager.connect_ssh(*args, **kwds)
Initialize a Manager over the SSH transport. For documentation of arguments see ncclient. transport.
SSHSession.connect().

The underlying ncclient. transport.SSHSession is created with CAPABILITIES. All the provided argu-
ments are passed directly to its implementation of connect ().

To customize the Manager, add a manager_params dictionary in connection parameters (e.g.
ager_params={ ‘timeout’: 60} for a bigger RPC timeout parameter)

man-

To invoke advanced vendor related operation add device_params={‘name’: ‘<vendor_alias>’} in connection
parameters. For the time, ‘junos’ and ‘nexus’ are supported for Juniper and Cisco Nexus respectively.

A custom device handler can be provided with device_params={‘handler’:<handler class>} in connection pa-
rameters.

ncclient.manager.connect = <function connect>

1.1.3 Manager

Exposes an API for RPC operations as method calls. The return type of these methods depends on whether we are in
asynchronous or synchronous mode.

In synchronous mode replies are awaited and the corresponding RPCReply object is returned. Depending on the
exception raising mode, an rpc-error in the reply may be raised as an RPCError exception.

However in asynchronous mode, operations return immediately with the corresponding RPC object. Error handling and
checking for whether a reply has been received must be dealt with manually. See the RPC documentation for details.

Chapter 1. Supported device handlers

ncclient Documentation, Release 0.6.12

Note that in case of the get () and get_config() operations, the reply is an instance of GetReply which exposes the
additional attributes data (as _Element) and data_xml (as a string), which are of primary interest in case of these
operations.

Presence of capabilities is verified to the extent possible, and you can expect a MissingCapabilityError if something
is amiss. In case of transport-layer errors, e.g. unexpected session close, TransportError will be raised.

class ncclient.manager.Manager (session, device_handler, timeout=30)

For details on the expected behavior of the operations and their
parameters refer to RFC 6241.

Manager instances are also context managers so you can use it like this:

with manager.connect("host™) as m:
do your stuff

. or like this:

m = manager.connect(host")
try:

do your stuff
finally:

m.close_session()

HUGE_TREE_DEFAULT = False
Default for huge_tree support for XML parsing of RPC replies (defaults to False)

get_config(source, filter=None, with_defaults=None)
get_config is mapped to GetConfig

get_schema (identifier, version=None, format=None)
get_schema is mapped to GetSchema
edit_config(config, format="xml', target="candidate', default_operation=None, test_option=None,
error_option=None)
edit_config is mapped to EditConfig
copy_config(source, target)
copy_config is mapped to CopyConfig
delete_config(rarget)
delete_config is mapped to DeleteConfig
dispatch(rpc_command, source=None, filter=None)
dispatch is mapped to Dispatch
lock (target="candidate")
lock is mapped to Lock
unlock (target="candidate")
unlock is mapped to Unlock
get (filter=None, with_defaults=None)
get is mapped to Get
close_session()

close_session is mapped to CloseSession

1.1. manager — High-level API 5

https://datatracker.ietf.org/doc/html/rfc6241.html

ncclient Documentation, Release 0.6.12

kill_session(session_id)
kill_session is mapped to KillSession

commit (confirmed=False, timeout=None, persist=None, persist_id=None)
commit is mapped to Commit

cancel_commit (persist_id=None)
cancel_commit is mapped to CancelCommit

discard_changes()
discard_changes is mapped to DiscardChanges

validate (source='candidate")

validate is mapped to Validate

create_subscription(filter=None, stream_name=None, start_time=None, stop_time=None)

create_subscription is mapped to CreateSubscription
reboot_machine()

reboot_machine is mapped to RebootMachine
poweroff_machine()

poweroff_machine is mapped to Powerofflfachine

locked (target)

Returns a context manager for a lock on a datastore, where farget is the name of the configuration datastore
to lock, e.g.:

with m.locked("running™):
do your stuff

. instead of:

m.lock("running")
try:
do your stuff
finally:
m.unlock("running")

take_notification(block=True, timeout=None)

Attempt to retrieve one notification from the queue of received notifications.
If block is True, the call will wait until a notification is received.

If timeout is a number greater than 0, the call will wait that many seconds to receive a notification before
timing out.

If there is no notification available when block is False or when the timeout has elapse, None will be
returned.

Otherwise a Notification object will be returned.
async_mode

Specify whether operations are executed asynchronously (7rue) or synchronously (False) (the default).
timeout

Specify the timeout for synchronous RPC requests.

6 Chapter 1. Supported device handlers

ncclient Documentation, Release 0.6.12

raise_mode

Specify which errors are raised as RPCError exceptions. Valid values are the constants defined in
RaiselMode. The default value is ALL.

client_capabilities
Capabilities object representing the client’s capabilities.

server_capabilities
Capabilities object representing the server’s capabilities.

session_id
session-id assigned by the NETCONF server.

connected
Whether currently connected to the NETCONF server.

huge_tree

Whether huge_tree support for XML parsing of RPC replies is enabled (default=False) The default value
is configurable through HUGE_TREE_DEFAULT

1.1.4 Special kinds of parameters

Some parameters can take on different types to keep the interface simple.

Source and target parameters

Where an method takes a source or target argument, usually a datastore name or URL is expected. The latter depends
on the :url capability and on whether the specific URL scheme is supported. Either must be specified as a string. For

» o«

example, “running”, “ftp://user:pass@host/config”.

If the source may be a config element, e.g. as allowed for the validate RPC, it can also be specified as an XML string
or an Element object.

Filter parameters
Where a method takes a filter argument, it can take on the following types:
* A tuple of (type, criteria).
Here type has to be one of “xpath” or “subtree”.

— For “xpath” the criteria should be a string containing the XPath expression or a tuple containing
a dict of namespace mapping and the XPath expression.

— For “subtree” the criteria should be an XML string or an E1ement object containing the criteria.
e A list of spec
Here type has to be “subtree”.
— the spec should be a list containing multiple XML string or multiple Element objects.

* A <filter> element as an XML string or an Element object.

1.2 Complete APl documentation

1.2.1 capabilities — NETCONF Capabilities

1.2. Complete APl documentation 7

ncclient Documentation, Release 0.6.12

ncclient.capabilities.schemes (url_uri)

Given a URI that has a scheme query string (i.e. :url capability URI), will return a list of supported schemes.

class ncclient.capabilities.Capabilities(capabilities)

Represents the set of capabilities available to a NETCONF client or server. It is initialized with a list of capability
URT’s.

Members

":cap" in caps
Check for the presence of capability. In addition to the URI, for capabilities of the form
urn:ietf:params:netconf:capability: $name: $version their shorthand can be used as a key. For example,

for urn:ietf:params:netconf:capability:candidate: 1.0 the shorthand would be :candidate. If version is sig-
nificant, use :candidate: 1.0 as key.

iter(caps)

Return an iterator over the full URI’s of capabilities represented by this object.

1.2.2 xm1_ — XML handling

Methods for creating, parsing, and dealing with XML and ElementTree objects.

exception ncclient.xml_.XMLError
Bases: NCClientError

Namespaces
ncclient.xml_.BASE_NS_1_0 = 'urn:ietf:params:xml:ns:netconf:base:1.0'
Base NETCONF namespace

ncclient.xml_.TAILF_AAA_1_1 = 'http://tail-f.com/ns/aaa/1.1’
Namespace for Tail-f core data model
ncclient.xml_.TAILF_EXECD_1_1 = 'http://tail-f.com/ns/execd/1.1"'
Namespace for Tail-f execd data model
ncclient.xml_.CISCO_CPI_1_0 = 'http://www.cisco.com/cpi_10/schema’
Namespace for Cisco data model
ncclient.xml_.JUNIPER_1_1 = 'http://xml.juniper.net/xnm/1.1/xnm'
Namespace for Juniper 9.6R4. Tested with Junos 9.6R4+
ncclient.xml_.FLOWMON_1_0 = 'http://www.liberouter.org/ns/netopeer/flowmon/1.0"'

Namespace for Flowmon data model

ncclient.xml_.register_namespace (prefix, uri)

Registers a namespace prefix that newly created Elements in that namespace will use. The registry is global, and
any existing mapping for either the given prefix or the namespace URI will be removed.

ncclient.xml_.qualify(tag, ns='urn:ietf:params:xml:ns:netconf:base:1.0")

Qualify a tag name with a namespace, in ElementTree fashion i.e. {namespacejtagname.

Conversion

ncclient.xml_.to_xml (ele, encoding='"UTF-8', pretty_print=False)
Convert and return the XML for an ele (Element) with specified encoding.

8 Chapter 1. Supported device handlers

ncclient Documentation, Release 0.6.12

ncclient.xml_.to_ele(x, huge_tree=False)
Convert and return the Element for the XML document x. If x is already an Element simply returns that.

huge_tree: parse XML with very deep trees and very long text content

ncclient.xml_.parse_root(raw)

Efficiently parses the root element of a raw XML document, returning a tuple of its qualified name and attribute
dictionary.

ncclient.xml_.validated_element (x, tags=None, attrs=None)
Checks if the root element of an XML document or Element meets the supplied criteria.

tags if specified is either a single allowable tag name or sequence of allowable alternatives

arttrs if specified is a sequence of required attributes, each of which may be a sequence of several allowable
alternatives

Raises XMLError if the requirements are not met.

1.2.3 transport — Transport / Session layer

Base types

class ncclient.transport.Session(capabilities)
Base class for use by transport protocol implementations.

This constructor should always be called with keyword arguments. Arguments are:
group should be None; reserved for future extension when a ThreadGroup class is implemented.
target is the callable object to be invoked by the run() method. Defaults to None, meaning nothing is called.

name is the thread name. By default, a unique name is constructed of the form “Thread-N" where N is a small
decimal number.

args is a list or tuple of arguments for the target invocation. Defaults to ().
kwargs is a dictionary of keyword arguments for the target invocation. Defaults to { }.

If a subclass overrides the constructor, it must make sure to invoke the base class constructor (Thread.__init__())
before doing anything else to the thread.

add_listener (listener)
Register a listener that will be notified of incoming messages and errors.

property client_capabilities
Client’s Capabilities
property connected

Connection status of the session.

get_listener_instance(cls)

If a listener of the specified type is registered, returns the instance.

property id

A string representing the session-id. If the session has not been initialized it will be None

1.2. Complete APl documentation 9

ncclient Documentation, Release 0.6.12

remove_listener (listener)

Unregister some listener; ignore if the listener was never registered.

property server_capabilities
Server’s Capabilities

class ncclient.transport.SessionlListener

Base class for Session listeners, which are notified when a new NETCONF message is received or an error
occurs.

Note

Avoid time-intensive tasks in a callback’s context.

callback (root, raw)

Called when a new XML document is received. The root argument allows the callback to determine whether
it wants to further process the document.

Here, root is a tuple of (fag, attributes) where tag is the qualified name of the root element and attributes
is a dictionary of its attributes (also qualified names).

raw will contain the XML document as a string.

errback(ex)
Called when an error occurs.

SSH session implementation

ssh.default_unknown_host_cb (fingerprint)

An unknown host callback returns True if it finds the key acceptable, and False if not.

This default callback always returns False, which would lead to connect () raising a SSHUnknownHost excep-
tion.

Supply another valid callback if you need to verify the host key programmatically.
host is the hostname that needs to be verified

fingerprint is a hex string representing the host key fingerprint, colon-delimited e.g.
“4b:69:6¢:72:6f:79:20:77:61:73:20:68:65:72:65:21”

class ncclient.transport.SSHSession(device_handler)

Bases: Session

Implements a RFC 4742 NETCONF session over SSH.

This constructor should always be called with keyword arguments. Arguments are:

group should be None; reserved for future extension when a ThreadGroup class is implemented.

target is the callable object to be invoked by the run() method. Defaults to None, meaning nothing is called.

name is the thread name. By default, a unique name is constructed of the form “Thread-N" where N is a small
decimal number.

args is a list or tuple of arguments for the target invocation. Defaults to ().

10

Chapter 1. Supported device handlers

https://datatracker.ietf.org/doc/html/rfc4742.html

ncclient Documentation, Release 0.6.12

kwargs is a dictionary of keyword arguments for the target invocation. Defaults to { }.

If a subclass overrides the constructor, it must make sure to invoke the base class constructor (Thread.__init_ ())
before doing anything else to the thread.

connect (host[, port=830, timeout=None, unknown_host_cb=default_unknown_host_cb, username=None,
password=None, key_filename=None, allow_agent=True, hostkey_verify=True, hostkey=None,
look_for_keys=True, ssh_config=None, bind_addr=None])

Connect via SSH and initialize the NETCONTF session. First attempts the publickey authentication method
and then password authentication.

To disable attempting publickey authentication altogether, call with allow_agent and look_for_keys as False.
host is the hostname or IP address to connect to

port is by default 830 (PORT_NETCONF_DEFAULT), but some devices use the default SSH port of 22
so this may need to be specified

timeout is an optional timeout for socket connect

unknown_host_cb is called when the server host key is not recognized. It takes two arguments, the hostname
and the fingerprint (see the signature of default_unknown_host_cb())

username is the username to use for SSH authentication

password is the password used if using password authentication, or the passphrase to use for unlocking keys
that require it

key_filename is a filename where a the private key to be used can be found
allow_agent enables querying SSH agent (if found) for keys
hostkey_verify enables hostkey verification from ~/.ssh/known_hosts

hostkey_b64 only connect when server presents a public hostkey matching this (obtain from server
/etc/ssh/ssh_host_*pub or ssh-keyscan)

look_for_keys enables looking in the usual locations for ssh keys (e.g. ~/.ssh/id_%)

ssh_config enables parsing of an OpenSSH configuration file, if set to its path, e.g. ~/.ssh/config or to
True (in this case, use ~/.ssh/config).

sock_fd is an already open socket which shall be used for this connection. Useful for NETCONF outbound
ssh. Use host=None together with a valid sock_fd number

bind_addr is a (local) source IP address to use, must be reachable from the remote device.
sock is an already open Python socket to be used for this connection.

keepalive Turn on/off keepalive packets (default is off). If this is set, after interval seconds without sending
any data over the connection, a “keepalive” packet will be sent (and ignored by the remote host). This can
be useful to keep connections alive over a NAT.

environment a dictionary containing the name and respective values to set

load_known_hosts (filename=None)
Load host keys from an openssh known_hosts-style file. Can be called multiple times.

If filename is not specified, looks in the default locations i.e. ~/.ssh/known_hosts and ~/ssh/
known_hosts for Windows.
property transport

Underlying paramiko.Transport object. This makes it possible to call methods like set_keepalive() on
it.

1.2. Complete APl documentation 11

http://www.lag.net/paramiko/docs/paramiko.Transport-class.html

ncclient Documentation, Release 0.6.12

Errors

exception ncclient.transport.TransportError
Bases: NCClientError

exception ncclient.transport.SessionCloseError (in_buf, out_buf=None)

Bases: TransportError

exception ncclient.transport.SSHError

Bases: TransportError

exception ncclient.transport.AuthenticationError

Bases: TransportError

exception ncclient.transport.SSHUnknownHostError (host, fingerprint)
Bases: SSHError

1.2.4 operations — Everything RPC
class ncclient.operations.RaiseMode
Define how errors indicated by RPC should be handled.

Note that any error_filters defined in the device handler will still be applied, even if ERRORS or ALL is defined:
If the filter matches, an exception will NOT be raised.

ALL = 2
Don’t look at the error-type, always raise.

ERRORS = 1

Raise only when the error-type indicates it is an honest-to-god error.

NONE = 0

Don’t attempt to raise any type of rpc-error as RPCError.

Base classes

class ncclient.operations.RPC(session, device_handler, async_mode=False, timeout=30, raise_mode=0,
huge_tree=False)

Base class for all operations, directly corresponding to rpc requests. Handles making the request, and taking
delivery of the reply.

session is the Session instance

device_handler” is the :class: ~ncclient.devices..*DeviceHandler™ instance

async specifies whether the request is to be made asynchronously, see is_async

timeout is the timeout for a synchronous request, see timeout

raise_mode specifies the exception raising mode, see raise_mode

huge_tree parse xml with huge_tree support (e.g. for large text config retrieval), see huge_tree

DEPENDS = []

Subclasses can specify their dependencies on capabilities as a list of URI’s or abbreviated names, e.g.
:writable-running’. These are verified at the time of instantiation. If the capability is not available,
MissingCapabilityError is raised.

12 Chapter 1. Supported device handlers

ncclient Documentation, Release 0.6.12

REPLY_CLS
alias of RPCReply
_assert (capability)

Subclasses can use this method to verify that a capability is available with the NETCONF server, before
making a request that requires it. A MissingCapabilityError will be raised if the capability is not
available.

_request(op)
Implementations of request () call this method to send the request and process the reply.

In synchronous mode, blocks until the reply is received and returns RPCReply. Depending on the
raise_mode a rpc-error element in the reply may lead to an RPCError exception.

In asynchronous mode, returns immediately, returning self. The event attribute will be set when the reply
has been received (see reply) or an error occured (see error).

op is the operation to be requested as an Element

property error
Exception type if an error occured or None.

Note

This represents an error which prevented a reply from being received. An rpc-error does not fall in that
category — see RPCReply for that.

property event
Event that is set when reply has been received or when an error preventing delivery of the reply occurs.
property huge_tree
Whether huge_tree support for XML parsing of RPC replies is enabled (default=False)
property is_async
Specifies whether this RPC will be / was requested asynchronously. By default RPC’s are synchronous.
property raise_mode
Depending on this exception raising mode, an rpc-error in the reply may be raised as an RPCError excep-
tion. Valid values are the constants defined in RaiseMode.
property reply
RPCReply element if reply has been received or None
request()
Subclasses must implement this method. Typically only the request needs to be built as an Element and
everything else can be handed off to _request ().
property timeout
Timeout in seconds for synchronous waiting defining how long the RPC request will block on a reply before
raising TimeoutExpiredError.

Irrelevant for asynchronous usage.

class ncclient.operations.RPCReply (raw, huge_tree=Fualse, parsing_error_transform=None)

Represents an rpc-reply. Only concerns itself with whether the operation was successful.

raw: the raw unparsed reply

1.2. Complete APl documentation 13

ncclient Documentation, Release 0.6.12

huge_tree: parse XML with very deep trees and very long text content

Note

If the reply has not yet been parsed there is an implicit, one-time parsing overhead to accessing some of the
attributes defined by this class.

_parsing_hook (root)
No-op by default. Gets passed the root element for the reply.

property error
Returns the first RPCError and None if there were no errors.

property errors
List of RPCError objects. Will be empty if there were no rpc-error elements in reply.

property ok

Boolean value indicating if there were no errors.
property xml

rpc-reply element as returned.

exception ncclient.operations.RPCError (raw, errs=None)

Bases: OperationError
Represents an rpc-error. It is a type of OperationError and can be raised as such.
property info

XML string or None; representing the error-info element.

property message

The contents of the error-message element if present or None.

property path

The contents of the error-path element if present or None.

property severity

The contents of the error-severity element.

property tag

The contents of the error-tag element.

property type

The contents of the error-type element.

Operations

Retrieval

class ncclient.operations.Get(session, device_handler, async_mode=Fualse, timeout=30, raise_mode=0,
huge_tree=False)

Bases: RPC
The get RPC.
session is the Session instance

device_handler” is the :class: ~ncclient.devices..*DeviceHandler™ instance

14 Chapter 1. Supported device handlers

ncclient Documentation, Release 0.6.12

async specifies whether the request is to be made asynchronously, see is_async

timeout is the timeout for a synchronous request, see timeout

raise_mode specifies the exception raising mode, see raise_mode

huge_tree parse xml with huge_tree support (e.g. for large text config retrieval), see huge_tree

REPLY_CLS = <class 'ncclient.operations.retrieve.GetReply'>
See GetReply.

request (filter=None, with_defaults=None)

Retrieve running configuration and device state information.
filter specifies the portion of the configuration to retrieve (by default entire configuration is retrieved)
with_defaults defines an explicit method of retrieving default values from the configuration (see RFC 6243)

Seealso
Filter parameters

class ncclient.operations.GetConfig(session, device_handler, async_mode=False, timeout=30,
raise_mode=0, huge_tree=False)

Bases: RPC

The get-config RPC.

session is the Session instance

device_handler” is the :class: ~ncclient.devices..*DeviceHandler™ instance

async specifies whether the request is to be made asynchronously, see is_async

timeout is the timeout for a synchronous request, see timeout

raise_mode specifies the exception raising mode, see raise_mode

huge_tree parse xml with huge_tree support (e.g. for large text config retrieval), see huge_tree

REPLY_CLS = <class 'ncclient.operations.retrieve.GetReply'>
See GetReply.

request (source, filter=None, with_defaults=None)
Retrieve all or part of a specified configuration.

source name of the configuration datastore being queried
filter specifies the portion of the configuration to retrieve (by default entire configuration is retrieved)
with_defaults defines an explicit method of retrieving default values from the configuration (see RFC 6243)

Seealso
Filter parameters

class ncclient.operations.GetReply(raw, huge_tree=False, parsing_error_transform=None)
Bases: RPCReply

Adds attributes for the data element to RPCReply.

property data

Same as data_ele

property data_ele

data element as an Element

1.2. Complete APl documentation 15

https://datatracker.ietf.org/doc/html/rfc6243.html
https://datatracker.ietf.org/doc/html/rfc6243.html

ncclient Documentation, Release 0.6.12

property data_xml

data element as an XML string

class ncclient.operations.Dispatch(session, device_handler, async_mode=False, timeout=30,

raise_mode=0, huge_tree=False)
Bases: RPC
Generic retrieving wrapper
session is the Session instance
device_handler” is the :class: ~ncclient.devices..*DeviceHandler™ instance
async specifies whether the request is to be made asynchronously, see is_async
timeout is the timeout for a synchronous request, see timeout
raise_mode specifies the exception raising mode, see raise_mode
huge_tree parse xml with huge_tree support (e.g. for large text config retrieval), see huge_tree

REPLY_CLS = <class 'ncclient.operations.rpc.RPCReply'>
See RPCReply.

request (rpc_command, source=None, filter=None)

rpc_command specifies rpc command to be dispatched either in plain text or in xml element format (de-
pending on command)

source name of the configuration datastore being queried
filter specifies the portion of the configuration to retrieve (by default entire configuration is retrieved)

Seealso
Filter parameters

Examples of usage:

dispatch('clear-arp-table')

or dispatch element like

xsd_fetch = new_ele('get-xnm-information")
sub_ele(xsd_fetch, 'type').text="xml-schema"
sub_ele(xsd_fetch, 'namespace').text="junos-configuration"
dispatch(xsd_fetch)

class ncclient.operations.GetSchema (session, device_handler, async_mode=False, timeout=30,

raise_mode=0, huge_tree=False)
Bases: RPC

The get-schema RPC.

session is the Session instance

device_handler” is the :class: ~ncclient.devices..*DeviceHandler™ instance
async specifies whether the request is to be made asynchronously, see is_async
timeout is the timeout for a synchronous request, see timeout

raise_mode specifies the exception raising mode, see raise_mode

huge_tree parse xml with huge_tree support (e.g. for large text config retrieval), see huge_tree

16

Chapter 1. Supported device handlers

ncclient Documentation, Release 0.6.12

REPLY_CLS = <class 'ncclient.operations.retrieve.GetSchemaReply'>
See GetReply.

request (identifier, version=None, format=None)

Retrieve a named schema, with optional revision and type.
identifier name of the schema to be retrieved

version version of schema to get

format format of the schema to be retrieved, yang is the default

Seealso
Filter parameters

Editing

class ncclient.operations.EditConfig(session, device_handler, async_mode=False, timeout=30,
raise_mode=0, huge_tree=False)

Bases: RPC

edit-config RPC

session is the Session instance

device_handler” is the :class: ~ncclient.devices..*DeviceHandler™ instance

async specifies whether the request is to be made asynchronously, see is_async

timeout is the timeout for a synchronous request, see timeout

raise_mode specifies the exception raising mode, see raise_mode

huge_tree parse xml with huge_tree support (e.g. for large text config retrieval), see huge_tree

request (config, format="xml', target='candidate’, default_operation=None, test_option=None,
error_option=None)

Loads all or part of the specified config to the target configuration datastore.
target is the name of the configuration datastore being edited

config is the configuration, which must be rooted in the config element. It can be specified either as a string
or an Element.

default_operation if specified must be one of { “merge”, “replace”, or “none” }

» o«

test_option if specified must be one of { “test-then-set”, “set”, “test-only” }

» o« » o«

error_option if specified must be one of { “stop-on-error”, “continue-on-error”, “rollback-on-error” }
The “rollback-on-error” error_option depends on the :rollback-on-error capability.

class ncclient.operations.DeleteConfig(session, device_handler, async_mode=False, timeout=30,
raise_mode=0, huge_tree=False)

Bases: RPC

delete-config RPC

session is the Session instance

device_handler” is the :class: ~ncclient.devices..*DeviceHandler™ instance
async specifies whether the request is to be made asynchronously, see is_async

timeout is the timeout for a synchronous request, see timeout

1.2. Complete APl documentation 17

ncclient Documentation, Release 0.6.12

raise_mode specifies the exception raising mode, see raise_mode
huge_tree parse xml with huge_tree support (e.g. for large text config retrieval), see huge_tree

request (target)
Delete a configuration datastore.

target specifies the name or URL of configuration datastore to delete

Seealso
Source and target parameters

class ncclient.operations.CopyConfig(session, device_handler, async_mode=False, timeout=30,

raise_mode=0, huge_tree=False)
Bases: RPC
copy-config RPC
session is the Session instance
device_handler” is the :class: ~ncclient.devices..*DeviceHandler™ instance
async specifies whether the request is to be made asynchronously, see is_async
timeout is the timeout for a synchronous request, see timeout
raise_mode specifies the exception raising mode, see raise_mode
huge_tree parse xml with huge_tree support (e.g. for large text config retrieval), see huge_tree

request (source, target)

Create or replace an entire configuration datastore with the contents of another complete configuration
datastore.

source is the name of the configuration datastore to use as the source of the copy operation or config element
containing the configuration subtree to copy

target is the name of the configuration datastore to use as the destination of the copy operation

Seealso
Source and target parameters

class ncclient.operations.Validate(session, device_handler, async_mode=False, timeout=30,

raise_mode=0, huge_tree=False)
Bases: RPC
validate RPC. Depends on the :validate capability.
session is the Session instance
device_handler” is the :class: ~ncclient.devices..*DeviceHandler instance
async specifies whether the request is to be made asynchronously, see is_async
timeout is the timeout for a synchronous request, see timeout
raise_mode specifies the exception raising mode, see raise_mode
huge_tree parse xml with huge_tree support (e.g. for large text config retrieval), see huge_tree

request (source='candidate")

Validate the contents of the specified configuration.

source is the name of the configuration datastore being validated or config element containing the config-
uration subtree to be validated

18

Chapter 1. Supported device handlers

ncclient Documentation, Release 0.6.12

Seealso
Source and target parameters

class ncclient.operations.Commit (session, device_handler, async_mode=False, timeout=30, raise_mode=0,
huge_tree=False)

Bases: RPC

commit RPC. Depends on the :candidate capability, and the :confirmed-commit.

session is the Session instance

device_handler” is the :class: ~ncclient.devices..*DeviceHandler™ instance

async specifies whether the request is to be made asynchronously, see is_async

timeout is the timeout for a synchronous request, see timeout

raise_mode specifies the exception raising mode, see raise_mode

huge_tree parse xml with huge_tree support (e.g. for large text config retrieval), see huge_tree

request (confirmed=False, timeout=None, persist=None, persist_id=None)

Commit the candidate configuration as the device’s new current configuration. Depends on the :candidate
capability.

A confirmed commit (i.e. if confirmed is True) is reverted if there is no followup commit within the timeout
interval. If no timeout is specified the confirm timeout defaults to 600 seconds (10 minutes). A confirming
commit may have the confirmed parameter but this is not required. Depends on the :confirmed-commit
capability.

confirmed whether this is a confirmed commit
timeout specifies the confirm timeout in seconds

persist make the confirmed commit survive a session termination, and set a token on the ongoing confirmed
commit

persist_id value must be equal to the value given in the <persist> parameter to the original <commit>
operation.

class ncclient.operations.DiscardChanges (session, device_handler, async_mode=False, timeout=30,
raise_mode=0, huge_tree=False)

Bases: RPC

discard-changes RPC. Depends on the :candidate capability.

session is the Session instance

device_handler” is the :class: ~ncclient.devices..*DeviceHandler™ instance

async specifies whether the request is to be made asynchronously, see is_async

timeout is the timeout for a synchronous request, see timeout

raise_mode specifies the exception raising mode, see raise_mode

huge_tree parse xml with huge_tree support (e.g. for large text config retrieval), see huge_tree

request()

Revert the candidate configuration to the currently running configuration. Any uncommitted changes are
discarded.

1.2. Complete APl documentation 19

ncclient Documentation, Release 0.6.12

class ncclient.operations.CancelCommit (session, device_handler, async_mode=False, timeout=30,

raise_mode=0, huge_tree=False)
Bases: RPC

cancel-commit RPC. Depends on the :candidate and :confirmed-commit capabilities.

session is the Session instance

device_handler” is the :class: ~ncclient.devices..*DeviceHandler™ instance

async specifies whether the request is to be made asynchronously, see is_async

timeout is the timeout for a synchronous request, see timeout

raise_mode specifies the exception raising mode, see raise_mode

huge_tree parse xml with huge_tree support (e.g. for large text config retrieval), see huge_tree

request (persist_id=None)
Cancel an ongoing confirmed commit. Depends on the :candidate and :confirmed-commit capabilities.

persist-id value must be equal to the value given in the <persist> parameter to the previous <commit>
operation.

Flowmon

class ncclient.operations.PoweroffMachine (session, device_handler, async_mode=False, timeout=30,

raise_mode=0, huge_tree=False)
Bases: RPC

poweroff-machine RPC (flowmon)

session is the Session instance

device_handler” is the :class: ~ncclient.devices..*DeviceHandler™ instance

async specifies whether the request is to be made asynchronously, see is_async

timeout is the timeout for a synchronous request, see timeout

raise_mode specifies the exception raising mode, see raise_mode

huge_tree parse xml with huge_tree support (e.g. for large text config retrieval), see huge_tree

request()

Subclasses must implement this method. Typically only the request needs to be built as an Element and
everything else can be handed off to _request().

class ncclient.operations.RebootMachine (session, device_handler, async_mode=False, timeout=30,

raise_mode=0, huge_tree=False)
Bases: RPC

reboot-machine RPC (flowmon)

session is the Session instance

device_handler” is the :class: ‘~ncclient.devices..*DeviceHandler™ instance
async specifies whether the request is to be made asynchronously, see is_async
timeout is the timeout for a synchronous request, see timeout

raise_mode specifies the exception raising mode, see raise_mode

huge_tree parse xml with huge_tree support (e.g. for large text config retrieval), see huge_tree

20

Chapter 1. Supported device handlers

ncclient Documentation, Release 0.6.12

request()

Subclasses must implement this method. Typically only the request needs to be built as an Element and
everything else can be handed off to _request().

Locking

class ncclient.operations.Lock(session, device_handler, async_mode=False, timeout=30, raise_mode=0,
huge_tree=False)

Bases: RPC

lock RPC

session is the Session instance

device_handler” is the :class: ‘~ncclient.devices..*DeviceHandler™ instance

async specifies whether the request is to be made asynchronously, see is_async

timeout is the timeout for a synchronous request, see timeout

raise_mode specifies the exception raising mode, see raise_mode

huge_tree parse xml with huge_tree support (e.g. for large text config retrieval), see huge_tree

request (target="candidate")

Allows the client to lock the configuration system of a device.
target is the name of the configuration datastore to lock

class ncclient.operations.Unlock(session, device_handler, async_mode=False, timeout=30, raise_mode=0,
huge_tree=False)

Bases: RPC

unlock RPC

session is the Session instance

device_handler” is the :class: ~ncclient.devices..*DeviceHandler™ instance

async specifies whether the request is to be made asynchronously, see is_async

timeout is the timeout for a synchronous request, see timeout

raise_mode specifies the exception raising mode, see raise_mode

huge_tree parse xml with huge_tree support (e.g. for large text config retrieval), see huge_tree

request (target="candidate")

Release a configuration lock, previously obtained with the lock operation.

target is the name of the configuration datastore to unlock

Session

class ncclient.operations.CloseSession(session, device_handler, async_mode=False, timeout=30,
raise_mode=0, huge_tree=False)

Bases: RPC
close-session RPC. The connection to NETCONTF server is also closed.
session is the Session instance

device_handler” is the :class: ~ncclient.devices..*DeviceHandler™ instance

1.2. Complete APl documentation 21

ncclient Documentation, Release 0.6.12

async specifies whether the request is to be made asynchronously, see is_async

timeout is the timeout for a synchronous request, see timeout

raise_mode specifies the exception raising mode, see raise_mode

huge_tree parse xml with huge_tree support (e.g. for large text config retrieval), see huge_tree

request()
Request graceful termination of the NETCONTF session, and also close the transport.

class ncclient.operations.KillSession(session, device_handler, async_mode=False, timeout=30,
raise_mode=0, huge_tree=False)

Bases: RPC

kill-session RPC.

session is the Session instance

device_handler” is the :class: ~ncclient.devices..*DeviceHandler™ instance

async specifies whether the request is to be made asynchronously, see is_async

timeout is the timeout for a synchronous request, see timeout

raise_mode specifies the exception raising mode, see raise_mode

huge_tree parse xml with huge_tree support (e.g. for large text config retrieval), see huge_tree

request (session_id)
Force the termination of a NETCONF session (not the current one!)

session_id is the session identifier of the NETCONTF session to be terminated as a string

Subscribing

class ncclient.operations.CreateSubscription(session, device_handler, async_mode=False, timeout=30,
raise_mode=0, huge_tree=False)

Bases: RPC

create-subscription RPC. Depends on the :notification capability.

session is the Session instance

device_handler” is the :class: ~ncclient.devices..*DeviceHandler™ instance

async specifies whether the request is to be made asynchronously, see is_async

timeout is the timeout for a synchronous request, see timeout

raise_mode specifies the exception raising mode, see raise_mode

huge_tree parse xml with huge_tree support (e.g. for large text config retrieval), see huge_tree

request (filter=None, stream_name=None, start_time=None, stop_time=None)

Creates a subscription for notifications from the server.
filter specifies the subset of notifications to receive (by default all notificaitons are received)

Seealso
Filter parameters

stream_name specifies the notification stream name. The default is None meaning all streams.

start_time triggers the notification replay feature to replay notifications from the given time. The default is
None, meaning that this is not a replay subscription. The format is an RFC 3339/ISO 8601 date and time.

22 Chapter 1. Supported device handlers

ncclient Documentation, Release 0.6.12

stop_time indicates the end of the notifications of interest. This parameter must be used with start_time. The

default is None, meaning that (if starz_time is present) the notifications will continue until the subscription
is terminated. The format is an RFC 3339/ISO 8601 date and time.

Exceptions

exception ncclient.operations.OperationError
Bases: NCClientError

exception ncclient.operations.MissingCapabilityError
Bases: NCClientError

exception ncclient.operations.TimeoutExpiredError
Bases: NCClientError

1.2. Complete APl documentation 23

ncclient Documentation, Release 0.6.12

24

Chapter 1. Supported device handlers

CHAPTER
TWO

INDICES AND TABLES

* genindex
* modindex

¢ search

25

ncclient Documentation, Release 0.6.12

26

Chapter 2. Indices and tables

c

ncclient.

m

ncclient.

o

ncclient.

t

ncclient.

X

ncclient.

capabilities, 7

manager, 3

operations, 12

transport, 9

xml_, 8

PYTHON MODULE INDEX

27

ncclient Documentation, Release 0.6.12

28

Python Module Index

Symbols

_assert () (ncclient.operations.RPC method), 13

_parsing_hook () (ncclient.operations.RPCReply
method), 14

_request() (ncclient.operations.RPC method), 13

A

add_listener() (ncclient.transport.Session method), 9
ALL (ncclient.operations.RaiseMode attribute), 12
async_mode (ncclient.manager.Manager attribute), 6
AuthenticationError, 12

B

BASE_NS_1_0 (in module ncclient.xml_), 8

C

callback() (ncclient.transport.SessionListener
method), 10

cancel_commit () (ncclient.manager.Manager method),
6

CancelCommit (class in ncclient.operations), 19
Capabilities (class in ncclient.capabilities), 8
CISCO_CPI_1_0 (in module ncclient.xml_), 8
client_capabilities (ncclient.manager.Manager at-

tribute), 7

client_capabilities (ncclient.transport.Session
property), 9

close_session() (ncclient.manager.Manager method),
5

CloseSession (class in ncclient.operations), 21

Commit (class in ncclient.operations), 19

commit () (ncclient. manager.Manager method), 6

connect (in module ncclient.manager), 4

connect () (ncclient.transport. SSHSession method), 11

connect_ssh() (in module ncclient.manager), 4

connected (ncclient.manager.Manager attribute), 7

connected (ncclient.transport.Session property), 9

copy_config() (ncclient.manager.Manager method), 5

CopyConfig (class in ncclient.operations), 18

create_subscription() (ncclient.manager.Manager
method), 6

CreateSubscription (class in ncclient.operations), 22

INDEX

D

data (ncclient.operations.GetReply property), 15

data_ele (ncclient.operations.GetReply property), 15

data_xml (ncclient.operations.GetReply property), 15

default_unknown_host_cb() (ncclient.transport.ssh
method), 10

delete_config() (ncclient.manager.Manager method),
5

DeleteConfig (class in ncclient.operations), 17

DEPENDS (ncclient.operations.RPC attribute), 12

discard_changes() (ncclient.manager.Manager
method), 6

DiscardChanges (class in ncclient.operations), 19

Dispatch (class in ncclient.operations), 16

dispatch(Q) (ncclient.manager.Manager method), 5

E

edit_config() (ncclient.manager.Manager method), 5

EditConfig (class in ncclient.operations), 17

errback() (ncclient.transport.SessionListener method),
10

error (ncclient.operations.RPC property), 13

error (ncclient.operations.RPCReply property), 14

ERRORS (ncclient.operations.RaiseMode attribute), 12

errors (ncclient.operations.RPCReply property), 14

event (ncclient.operations.RPC property), 13

F

FLOWMON_1_0 (in module ncclient.xml_), 8

G

Get (class in ncclient.operations), 14

get () (ncclient.manager.Manager method), 5

get_config() (ncclient.manager.Manager method), 5

get_listener_instance() (ncclient.transport.Session
method), 9

get_schema() (ncclient.manager.Manager method), 5

GetConfig (class in ncclient.operations), 15

GetReply (class in ncclient.operations), 15

GetSchema (class in ncclient.operations), 16

29

ncclient Documentation, Release 0.6.12

H

huge_tree (ncclient. manager.Manager attribute), 7

huge_tree (ncclient.operations.RPC property), 13

HUGE_TREE_DEFAULT (ncclient.manager.Manager
attribute), 5

id (ncclient.transport.Session property), 9
info (ncclient.operations. RPCError property), 14
is_async (ncclient.operations.RPC property), 13

J

JUNIPER_1_1 (in module ncclient.xml_), 8

K

kill_session() (ncclient.manager.Manager method), 5
KillSession (class in ncclient.operations), 22

L

load_known_hosts()
method), 11

Lock (class in ncclient.operations), 21

lock () (ncclient.manager.Manager method), 5

locked () (ncclient.manager.Manager method), 6

M

Manager (class in ncclient.manager), 5

message (ncclient.operations.RPCError property), 14

MissingCapabilityError, 23

module
ncclient.capabilities, 7
ncclient.manager, 3
ncclient.operations, 12
ncclient.transport, 9
ncclient.xml_, 8

N

ncclient.capabilities
module, 7

ncclient.manager
module, 3

ncclient.operations
module, 12

ncclient. transport
module, 9

ncclient.xml_
module, 8

NONE (ncclient.operations.RaiseMode attribute), 12

O

ok (ncclient.operations.RPCReply property), 14
OperationError, 23
OPERATIONS (in module ncclient.manager), 3

(ncclient.transport. SSHSession

P

parse_root () (in module ncclient.xml_), 9

path (ncclient.operations. RPCError property), 14

poweroff_machine() (ncclient.manager.Manager
method), 6

PoweroffMachine (class in ncclient.operations), 20

Q

qualify () (in module ncclient.xml_), 8

raise_mode (ncclient.manager.Manager attribute), 6

raise_mode (ncclient.operations.RPC property), 13

RaiseMode (class in ncclient.operations), 12

reboot_machine() (ncclient.manager.Manager
method), 6

RebootMachine (class in ncclient.operations), 20

register_namespace() (in module ncclient.xml_), 8

remove_listener() (ncclient.transport.Session
method), 9

reply (ncclient.operations.RPC property), 13

REPLY_CLS (ncclient.operations.Dispatch attribute), 16

REPLY_CLS (ncclient.operations.Get attribute), 15

REPLY_CLS (ncclient.operations.GetConfig attribute), 15

REPLY_CLS (ncclient.operations.GetSchema attribute),
16

REPLY_CLS (ncclient.operations.RPC attribute), 12

request () (ncclient.operations. Cancel Commit method),
20

request() (ncclient.operations.CloseSession method),
22

request () (ncclient.operations. Commit method), 19

request () (ncclient.operations. CopyConfig method), 18

request() (ncclient.operations. CreateSubscription
method), 22

request() (ncclient.operations.DeleteConfig method),
18

request() (ncclient.operations.DiscardChanges
method), 19

request () (ncclient.operations.Dispatch method), 16

request () (ncclient.operations.EditConfig method), 17

request () (ncclient.operations.Get method), 15

request () (ncclient.operations.GetConfig method), 15

request () (ncclient.operations.GetSchema method), 17

request () (ncclient.operations.KillSession method), 22

request () (ncclient.operations.Lock method), 21

request() (ncclient.operations. PoweroffMachine
method), 20

request() (ncclient.operations.RebootMachine
method), 20

request () (ncclient.operations.RPC method), 13

request () (ncclient.operations.Unlock method), 21

request () (ncclient.operations.Validate method), 18

30

Index

ncclient Documentation, Release 0.6.12

RFC
RFC 4742, 10
RFC 6241,1,5
RFC 6243, 15
RPC (class in ncclient.operations), 12
RPCError, 14
RPCReply (class in ncclient.operations), 13

S

schemes () (in module ncclient.capabilities), 7

server_capabilities (ncclient.manager.Manager at-
tribute), 7

server_capabilities (ncclient.transport.Session
property), 10

Session (class in ncclient.transport), 9

session_id (ncclient.manager.Manager attribute), 7

SessionCloseError, 12

SessionListener (class in ncclient.transport), 10

severity (ncclient.operations.RPCError property), 14

SSHError, 12

SSHSession (class in ncclient.transport), 10

SSHUnknownHostError, 12

T

tag (ncclient.operations.RPCError property), 14

TAILF_AAA_1_1 (in module ncclient.xml_), 8

TAILF_EXECD_1_1 (in module ncclient.xml_), 8

take_notification() (ncclient.manager.Manager
method), 6

timeout (ncclient.manager.Manager attribute), 6

timeout (ncclient.operations.RPC property), 13

TimeoutExpiredError, 23

to_ele() (in module ncclient.xml_), 8

to_xml () (in module ncclient.xml_), 8

transport (ncclient.transport. SSHSession property), 11

TransportError, 12

type (ncclient.operations.RPCError property), 14

U

Unlock (class in ncclient.operations), 21
unlock) (ncclient.manager.Manager method), 5

\Y

Validate (class in ncclient.operations), 18
validate() (ncclient.manager.Manager method), 6
validated_element () (in module ncclient.xml_), 9

X

xml (ncclient.operations.RPCReply property), 14
XMLError, 8

Index

31

	Supported device handlers
	manager – High-level API
	Customizing
	Factory functions
	Manager
	Special kinds of parameters
	Source and target parameters
	Filter parameters

	Complete API documentation
	capabilities – NETCONF Capabilities
	xml_ – XML handling
	Namespaces
	Conversion

	transport – Transport / Session layer
	Base types
	SSH session implementation
	Errors

	operations – Everything RPC
	Base classes
	Operations
	Retrieval
	Editing
	Flowmon
	Locking
	Session
	Subscribing

	Exceptions

	Indices and tables
	Python Module Index
	Index

